a2 United States Patent

Friske et al.

US009317543B2

US 9,317,543 B2
Apr. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54) DROPPING COLUMNS FROM A TABLE
WITH MINIMIZED UNAVAILABILITY

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Craig A. Friske, Morgan Hill, CA (US);
Charles H. Lin, San Jose, CA (US);
Regina J. Liu, San Jose, CA (US); Jerry
Mukai, San Jose, CA (US); Kalpana
Shyam, Los Altos, CA (US); Cherri
Vidmar, Gilroy, CA (US); Julie A.
Watts, Morgan Hill, CA (US); Jay A.
Yothers, Gilroy, CA (US); Binghui
Zhong, San Jose, CA (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 221 days.

(21) Appl. No.: 14/154,000

(22) Filed: Jan. 13, 2014

(65) Prior Publication Data

US 2015/0199393 Al Jul. 16,2015
(51) Imt.ClL
GO6F 17/30 (2006.01)
(52) US.CL

CPC ... GOG6F 17/30292 (2013.01); GOGF 17/30315
(2013.01); GOGF 17/30339 (2013.01)

201 Execute statement to
drop given column in
table

210 Defer application of

reorganization of table

given column drop until [———

(58) Field of Classification Search

None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,016,497 A 1/2000 Suver

6,965,899 Bl 11/2005 Subramaniam et al.
2005/0091233 Al 4/2005 Friske et al.
2012/0089566 Al* 4/2012 Effern GO6F 17/30377

707/611

* cited by examiner

Primary Examiner — Hung Q Pham

(74) Attorney, Agent, or Firm — North Shore Patents, P.C.;
Michele Liu Baillie

(57) ABSTRACT

Dropping of columns from a table with data availability,
where the columns in the table are each associated with a
column number, includes: executing a statement to drop a
given column in the table and deferring an application of the
statement until a reorganization of a current data set including
the table. When the reorganization of the current data set is
performed, the reorganization includes: updating column
numbers for columns in each row of the table using a mapping
data structure to remove the given column; loading the plu-
rality of data rows with the updated column numbers into a
shadow data set; applying to the shadow data set any changes
to the table that are concurrent with the reorganization; updat-
ing a schema definition of the table with the updated column
numbers; and switching the current data set to the shadow
data set.

12 Claims, 4 Drawing Sheets

space containing table

I

220 Perform

221 Unload data rows in pre-
drop column format from
original table

Original table space

Mapping data
structure

reorganization of table

I

space containing table,
including application of
given column drop on
table

M

222 Convert data rows to
post-drop column format
using mapping data structure

I

223 Load new row in post-
drop column format into
shadow data set

Shadow table space

224 Read log for concurrent
changes to original table and
convert to post-drop column
format

I

225 Apply converted
concurrent changes to
shadow data set

226 Update schema in
catalog and directory and
switch shadow data set to
current data set

Mapping data
structure

Log of concurrent
changes

U.S. Patent

Display 110

Apr. 19,2016 Sheet 1 of 4 US 9,317,543 B2
Computer System Memorv 101
100 U
RAM 102 &3> St<1>(r)a496
N—
Processor 106
h
C$83e > Program
) Code 105
Bus 109
D A

I/O Interface(s)

o 107

h

y

Network Adapter 108

A
External
Device(s) 111

FIG. 1

U.S. Patent

Apr. 19,2016

201 Execute statement to
drop given column in

table
|

210 Defer application of
given column drop until
reorganization of table
space containing table

|

220 Perform
reorganization of table
space containing table,
including application of
given column drop on
table

Sheet 2 of 4

US 9,317,543 B2

221 Unload data rows in pre-
drop column format from
original table

Original table space

Mapping data
structure

y

222 Convert data rows to
post-drop column format
using mapping data structure

y

223 Load new row in post-
drop column format into
shadow data set

Shadow table space

}

224 Read log for concurrent
changes to original table and
convert to post-drop column

Mapping data
| structure

Log of concurrent
changes

format
|

225 Apply converted
concurrent changes to
shadow data set

}

226 Update schema in
catalog and directory and
switch shadow data set to
current data set

U.S. Patent Apr. 19,2016 Sheet 3 of 4 US 9,317,543 B2

»— 301
CREATE TABLE MYTB (A INT, B INT, C INT, D INT) IN MYDB.MYTS;

302
Metadata: r-

Column Name A B C D
Column Number 1 2

w
N

ALTER TABLE MYTB DROP COLUMN B RESTRICT;
ALTER TABLE MYTB DROP COLUMN C RESTRICT; 3

p— 304
REORG TABLESPACE MYDB.MYTS SHRLEVEL CHANGE

305

306 Correlation Array: r
307\ Array Index (Pre-drop column number) 1 2 3 4
A Array Value (Post-drop column number) | 1 0 0 2

2I
Metadata: ' 30

Column Name A D
Column Number 1 2

401
Pre-drop column numbers:®”
Column1 Column2 Column3 Column4 Column5
1 2 3 4 5

402
Post-drop column numbers: r
Column1 Column2 Column4 Column5
1 2 3 4

FIG. 4

U.S. Patent Apr. 19,2016 Sheet 4 of 4 US 9,317,543 B2
501
Table definitions for T1, T2, and T3:
T1(C1,C2,C3)
T2(C1,C2,C3)
T3(C1,C2,C3)
. " .. . o 502
Join result for three table join, T1 join T2 join T3:
C1(T1) [C2(T1) | C3(T1) [C1(T2) | C2(T2) | C3(T2) | CI(TI) | C2(T3) | C3(T3)
1 2 3 4 5 6 7 8 9

503
Column number information for view V1 referencing 5 columns in join result: r

C1(T1) C1(T2) C2(T2) C1(T3) C3(T3)
1 4 5 7 9
p— S04
Column number information in new join result with T1 altered to add three columns:
C1 c2 C3 c4 C5 C8 C1 C2 C3 C1 C2 C3
(T | (@) | @) | @ | an | qan | @2 | q2) | 12) | (13) | (T3) | (T3)
1 2 3 4 5 6 7 8 9 10 11 12
506 507 508
505
Column numbers stored in V/ compared wi% new column numbers in join/esult:
ciuty ¥| cim2) F| c2(T2) ci 3) P | c3(T3)
Old humber 1 4 5 7 9
New number 1 7 ? 10 ?
509
Final column numbers after applying dropping of C2 from T3:
C1(T1) C1(T2) C2(T2) C1(T3) C3(T3)
Old number 1 4 5 7 9
New number 1 7 8 10 11

FIG. 5

US 9,317,543 B2

1
DROPPING COLUMNS FROM A TABLE
WITH MINIMIZED UNAVAILABILITY

BACKGROUND

Users of relational databases have existing tables of data
that contain obsolete columns. The dropping of a column
from a table encompasses two main parts. The first part is the
modification of the metadata, i.e., catalog definition, associ-
ated with the table’s schema definition, and the second part is
the reorganization of the table’s data to remove the dropped
column data. In existing approaches, the table is placed in a
restrictive state for the reorganization, which means that the
data is unavailable between the time the metadata is modified
to reflect the dropped column and the time that the table data
reorganization is completed. For tables with substantial
amounts of data, the process of reorganizing may result in an
unacceptable outage.

SUMMARY

According to one embodiment of the present invention, a
method drops columns from a table, where the columns in the
table are each associated with a column number. The method
executes a statement to drop a given column in the table and
defers an application of the statement to drop the given col-
umn until a reorganization of'a current data set comprising the
table. The method performs the reorganization of the current
data set to include the application of the statement to drop the
given column. In performing the reorganization, the method
updates column numbers for columns in each row of the table
using a mapping data structure to remove the given column,
loads the plurality of data rows with the updated column
numbers into a shadow data set, applies to the shadow data set
any changes to the table that are concurrent with the reorga-
nization, updates a schema definition of the table with the
updated column numbers, and switches the current data set to
the shadow data set.

In one aspect of the present invention, the switching of the
current data set to the shadow data set further includes updat-
ing of column numbers stored in any dependent objects of
remaining columns in the table and dropping any dependent
objects associated with the given column.

In one aspect of the present invention, in updating the
column numbers for the columns in each row of the table
using the mapping data structure to remove the given column,
the method creates the mapping data structure comprising a
correlation array, where an index of the correlation array
represent pre-drop column numbers for the columns of the
table in ascending order and where element values of the
correlation array represents post-drop column numbers for
the columns of the table. The method sets the element value of
the given column to a predetermined value associated with a
dropped column, renumbers the element value of any col-
umns subsequent to the given column to remove the given
column, and updates column numbers stored in the schema
definition of the table according to the renumbered element
values of the correlation array.

In one aspect of the present invention, the method deter-
mines that a view references the table, where the view stores
the column numbers for the columns of the table at a time the
view was created. The method updates the column numbers
stored in the view according to the renumbered element val-
ues of the correlation array.

In one aspect of the present invention, the method deter-
mines that a view comprises a join referencing the table,
where the view stores the column numbers of a first join result

10

15

20

25

30

35

40

45

50

55

60

65

2

at a time the view was created. The method compares column
numbers of unique column references in the first join result
with column number in a second join result based on current
table definitions, updates column numbers for remaining col-
umns in the second join result based on any differences in the
column numbers of the unique column references between
the first join and the second join result, and further updates the
column numbers for the columns in the second join result
according to the removal of the given column from the table.

In one aspect of the present invention, in applying to the
shadow data set of the changes to the table concurrent with the
reorganization, the method reads a log for the changes to the
current data set concurrent with the reorganization, converts
the changes to apply to the shadow data set using the mapping
data structure, and applies the converted changes to the
shadow data set.

System and computer program products corresponding to
the above-summarized methods are also described and
claimed herein.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 illustrates a system for dropping columns from a
table with data availability according to embodiments of the
present invention.

FIG. 2 is a flowchart illustrating a method for dropping
columns from a table with data availability according to
embodiments of the present invention.

FIG. 3 illustrates an example of a correlation array as a
mapping data structure according to embodiments of the
present invention.

FIG. 4 illustrates an example of updating column numbers
ofabasetable referenced ina view according to embodiments
of the present invention.

FIG. 5 illustrates an example of updating column numbers
of a join result referenced in a view according to embodi-
ments of the present invention.

DETAILED DESCRIPTION

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only

US 9,317,543 B2

3

memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java®
(Java, and all Java-based trademarks and logos are trade-
marks of Sun Microsystems, Inc. in the United States, other
countries, or both), Smalltalk, C++ or the like and conven-
tional procedural programming languages, such as the “C”
programming language or similar programming languages.
The program code may execute entirely on the user’s com-
puter, partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer special purpose computer or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to

20

25

40

45

55

4

be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified local function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

FIG. 1 illustrates a system for dropping columns from a
table with data availability according to embodiments of the
present invention. The computer system 100 is operationally
coupled to a processor or processing units 106, a memory
101, and a bus 109 that couples various system components,
including the memory 101 to the processor 106. The bus 109
represents one or more of any of several types of bus structure,
including a memory bus or memory controller, a peripheral
bus, an accelerated graphics port, and a processor or local bus
using any of a variety of bus architectures. The memory 101
may include computer readable media in the form of volatile
memory, such as random access memory (RAM) 102 or
cache memory 103, or non-volatile storage media 104. The
memory 101 may include at least one program product having

US 9,317,543 B2

5

a set of at least one program code module 105 that are con-
figured to carry out the functions of embodiment of the
present invention when executed by the processor 106. The
computer system 100 may also communicate with one or
more external devices 111, such as a display 110, via I/O
interfaces 107. The computer system 100 may communicate
with one or more networks via network adapter 108. In this
embodiment, the present invention is implemented as part of
the utilities of a relational database management system
(RDBMS). A reorganization utility may be implemented as
part of the program code 105 of the RDBMS or as a separate
application.

FIG. 2 is a flowchart illustrating a method for dropping
columns from a table with data availability according to
embodiments of the present invention. When a statement to
drop a given column in a table is executed (201), the method
defers the application of the statement to drop the given
column until the reorganization of the current data set con-
taining the table (210). When the reorganization of the current
data set containing the table is performed, the reorganization
includes the application of the statement to drop the given
column from the table (220). In this embodiment, each col-
umn inthe table is assigned a column number. When a column
is added to a table, it is assigned the next column number.
When a column is dropped from the table, the subsequent
columns are renumbered so that the columns are numbered
sequentially. The column numbers of a table are stored in
several different places, including the catalog and dependent
objects such as views. When columns are added or dropped,
the column numbers at each of these places are to be updated.
Further in this embodiment, a SQL data definition language
(DDL) statement is introduced to drop the given column from
the table. At execution time, instead of applying the DDL
statement immediately, the DDL statement is queued in a
request table to be materialized during the next reorganization
of the table space containing the table’s data. In this manner,
the DDL statement is treated as a “pending definition
change”. The dropping of the given column thus does not take
effect immediately in the table’s schema definition or in the
current data set. Until the reorganization, the given column is
still accessible using the table’s schema definition prior to the
drop. During the reorganization, the dropped column is mate-
rialized in both the table’s schema definition and the data. The
materialization during reorganization includes the actual
removal of the dropped column from each row of the table,
where each row is converted from a pre-drop column format
to a post-drop column format. The schema definition changes
for dropping a column includes a renumbering of subsequent
columns in the table, updating dependent objects or structures
that store affected column numbers, and dropping any perti-
nent dependent objects or structures associated with the
dropped column, as described further below. In the pre-drop
column format, a row includes column numbers and depen-
dent objects or structures prior to the dropping of columns. In
the post-drop column format, a row includes the renumbered
subsequent columns in the table with updated dependent
objects or structures resulting from the dropping of columns.

FIG. 2 further illustrates in more detail the reorganization
of the table space containing the table with the dropped col-
umn, according to embodiments of the present invention.
During the reorganization, the queued pending definition
changes are applied, both to the table’s schema definition and
to the current data set. Multiple columns can be dropped from
the same table as pending definition changes. Any concurrent
updates with the reorganization operate on the pre-drop col-
umn format of a row, and the updates are logged. The method
unloads data rows in a pre-drop column format from the

10

15

20

25

30

35

40

45

50

55

60

65

6

current data set (221). The method updates the column num-
ber in each data row, i.e., converts each data row to the
post-drop column format, using a mapping data structure, as
described further below (222). The rows with the updated
column numbers are then loaded into a shadow data set (223).
The method reads the log for concurrent changes to the table
in the current data set and converts these concurrent opera-
tions to the post-drop column format to be applied to the
shadow data set (224). For example, if the log contains an
update on a column whose column number was renumbered,
the update is changed to reflect the updated column number.
For another example, if the log contains an update on a
dropped column, the update is dropped as well. The converted
concurrent changes are then applied to the shadow data set
(225). Next, the method performs the “switch” phase, where
the shadow data set becomes the current data set, and the
table’s schema definition in the catalog and directory are
updated with the updated column numbers (226).

In one embodiment, a correlation array is used as the map-
ping data structure for converting a row from the pre-drop
column format to the post-drop column format. FIG. 3 illus-
trates an example of a correlation array as a mapping data
structure according to embodiments of the present invention.
As set forth in the CREATE statement 301, table MYTB is
created in table space MYDB.MYTS to contain four col-
umns. The metadata 302 for table MYTB’s schema includes
the column names (A, B, C, and D) and their corresponding
column numbers (1, 2, 3, and 4), respectively. Assume that
ALTER statements 303 to drop columns B and C are then
executed (201 of FIG. 2). The ALTER statements 303 are
queued as pending definition changes, and their applications
are deferred until the reorganization of the table space
MYDB.MYTS (210 of FIG. 2). During the execution of a
REORG statement 304 to reorganize the table space MYDB-
.MYTS, a correlation array 305 is created for use in convert-
ing the data rows of table MY'TB from the pre-drop column
format to the post-drop column format (222 of FIG. 2). The
array index 306 represents the pre-drop column number of
each column in table MYTB in ascending order, and the
values of the array elements 307 represent the post-drop
column number of each column in table MYTB. When a
column is dropped, the element value for the column is set to
zero. In the correlation array 305, array index 1, 2, 3, and 4
correspond to columns A, B, C, and D, respectively, prior to
the application of the ALTER statements 303. The ALTER
statements 303 drop columns B and C, corresponding to
column numbers 2 and 3 in the pre-drop column format. After
being dropped, the values of array elements 2 and 3 are set to
zero, and the column numbers for the subsequent column D is
renumbered to 2. Thus, in the post-drop column format, the
array element values are 1, 0, 0, and 2. In this manner, the
pre-drop column number is mapped to the post-drop column
number. After all data in table MYTB have been converted to
their post-drop column format, the associated metadata 302'
is also updated to remove the columns that were dropped and
to reflect the new column numbers of the remaining columns.

Although the above embodiment of the present invention is
described using a correlation array, other data structures may
be used to map the pre-drop column format to the post-drop
column format without departing from the spirit and scope of
the present invention.

The dropped columns may be associated with dependent
objects, such as indexes, LOB table spaces, views, and pack-
ages. These objects are logically connected with the table
columns using a relative column number. Thus, they must
also be updated with the appropriate column numbers during
the “switch” phase. For example, when the column number of

US 9,317,543 B2

7

a column is renumbered, the column number reflected in its
dependent object must be updated with the new column num-
ber. For another example, the dropped column may be a large
object (LOB) column. Typically, LOB data is not stored in the
source table, but rather in a separate LOB table space with an
index. When a LOB column is dropped, the LOB table space
and the index would be dropped as well. For these dependent
objects, certain processes during the reorganization will be
skipped, such as the cleanup process, i.e., the deletion of the
underlying data sets and index would be skipped.

For another example, a view may reference a table from
which a column is dropped after the view was created. The
internal structure of the view stores the column numbers of
the table columns at the time the view is created. When
columns are added or dropped from the table after the view
was created, the column numbers will change, and the column
numbers stored in the view will require updating. Columns
are referenced in a view in two ways: columns in a base table;
and columns in join results. FIG. 4 illustrates an example of
updating column numbers of a base table referenced in a view
according to embodiments of the present invention. In this
example, the view references Columnl, Column2, Column3,
Columnd, and ColumnS5 of a base table. At the time the view
was created, the column numbers 1, 2, 3, 4, and 5 in the
pre-drop column format 401 are stored in the view. Assume
that after the view was created, Column3 is dropped from the
base table. The column numbers for the subsequent columns,
Column4 and Column5, are then renumbered or mapped to
the post-drop column format 402 using the correlation array,
as described above.

FIG. 5 illustrates an example of updating column numbers
of a join result referenced in a view according to embodi-
ments of the present invention. A join result is constructed by
concatenating all columns of each base table in the join order.
The example illustrates a join when base tables are altered to
add columns after the view has been created, and then col-
umns are dropped from one of the base tables. Although the
column numbers of the base tables are stored in the internal
structure of the view when the view was created, the number
of columns in a base table is not stored. This requires addi-
tional handling in determining the renumbered columns for a
join result. For example, assume that the join involves three
base tables, T1, T2, and T3, with table definitions 501. Illus-
trated is the join result 502 for the three table join, T1 join T2
join T3. Also illustrated is a view, V1, created with the table
definitions 501, which references five columns from the join
result. V1 would store the column number information 503
for the referenced five columns, but the total number of col-
umns in the join, 9, is not stored. After V1 was created,
assume that T1 was altered to add three more columns. When
V1is referenced, a new join result is built based on the current
table information to compare with what is stored in the view.
Iustrated is the column number information in the new join
result 504. Assume that C2 is then dropped from T3. To
determine the column numbers after C2 in T3 is dropped, the
column numbers after the three columns were added to T1
need to be considered, without the knowledge of the number
of columns added to T1 since V1 was created. First, the
column numbers stored in V1 and the newly generated col-
umn numbers in the join result are compared 505. The new
column numbers are generated for an affected source table
using the correlation array, described above. Unique column
references (columns with the same names but have different
column numbers) are identified. In the illustrated example,
there are three unique references to C1, from each of the three
base tables, T1, T2, and T3. The first reference of C1 (506)
retains the same column number, while the new column num-

10

15

20

25

30

35

40

45

50

55

60

65

8
bers for the second and third references of C1 (507, 508) have
increased by three. The column number for C1 from T2
increased from 4 to 7. The column number for C1 from T3
increased from 7 to 10. Since the new join result 505 shows
references to C1 in each base table, the method may deduce
that table T1 in the join order had three columns added since
V1 was created. Using this deduction, column number of C2
in T2 is updated to 8 (old column number 5 plus 3). Similarly,
the column number of C3 in T3 is updated to 12 (old column
number 9 plus 3). Since C2 in T3 is dropped, C3's column
number is further adjusted to 11. Illustrated are the final
column numbers 509 after applying the dropping of C2 from
T3.
The descriptions of the various embodiments ofthe present
invention has been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.
What is claimed is:
1. A computer program product for dropping columns in a
table, wherein the columns in the table are each associated
with a column number, the computer program product com-
prising:
a computer readable storage medium having computer
readable program code embodied therewith, the pro-
gram code executable by a processor to:
execute a statement to drop a given column in the table;
defer an application of the statement to drop the given
column until a reorganization of a current data set com-
prising the table; and
perform the reorganization of the current data set to com-
prise the application of the statement to drop the given
column, comprising:
update column numbers for columns in each row of the
table using a mapping data structure to remove the
given column;

load a plurality of data rows with the updated column
numbers into a shadow data set;

apply to the shadow data set any changes to the table that
are concurrent with the reorganization;

update a schema definition of the table with the updated
column numbers; and

switch the current data set to the shadow data set.

2. The computer program product of claim 1, wherein the
program code executable by the processor to switch the cur-
rent data set to the shadow data set is further executable to:

update column numbers stored in any dependent objects of
remaining columns in the table; and

drop any dependent objects associated with the given col-
umn.

3. The computer program product of claim 1, wherein the
program code executable by the processor to update the col-
umn numbers for the columns in each row of the table using
the mapping data structure to remove the given column is
further executable to:

create the mapping data structure comprising a correlation
array, wherein an index of the correlation array repre-
sents pre-drop column numbers for the columns of the
table in ascending order, wherein element values of the
correlation array represent post-drop column numbers
for the columns of the table,

US 9,317,543 B2

9

set the element value of the given column to a predeter-
mined value associated with a dropped column;

renumber the element value of any columns subsequent to
the given column to remove the given column; and

update column numbers stored in the schema definition of
the table according to the renumbered element values of
the correlation array.

4. The computer program product of claim 3, wherein the
program code executable by the processor to update the
schema definition of the table with the updated column num-
bers for the columns in each row of the table using the map-
ping data structure to remove the given column is further
executable to:

determine that a view references the table, wherein the

view stores the column numbers for the columns of the
table at a time the view was created; and

update the column numbers stored in the view according to

the renumbered element values of the correlation array.

5. The computer program product of claim 3, wherein the
program code executable by the processor to update the
schema definition of the table with the updated column num-
bers for the columns in each row of the table using the map-
ping data structure to remove the given column is further
executable to:

determine that a view comprises a join referencing the

table, wherein the view stores the column numbers of a
first join result at a time the view was created;

compare column numbers of unique column references in

the first join result with column number in a second join
result based on current table definitions;

update column numbers for remaining columns in the sec-

ond join result based on any differences in the column
numbers of the unique column references between the
first join and the second join result; and

further update the column numbers for the columns in the

second join result according to the removal of the given
column from the table.

6. The computer program product of claim 1, wherein the
program code executable by the processor to apply the
shadow data set of the changes to the table concurrent with the
reorganization is further executable to:

read a log for the changes to the current data set concurrent

with the reorganization;

convert the changes to apply to the shadow data set using

the mapping data structure; and

apply the converted changes to the shadow data set.

7. A system, comprising:

a processor; and

a computer program product comprising a computer read-

able storage medium having computer readable program
code embodied therewith, the program code executable
by a processor to:
execute a statement to drop a given column in the table,
wherein the columns in the table are each associated
with a column number;
defer an application of the statement to drop the given
column until a reorganization of a current data set
comprising the table; and
perform the reorganization of the current data set to
comprise the application of the statement to drop the
given column, comprising:
update column numbers for columns in each row of
the table using a mapping data structure to remove
the given column;
load a plurality of data rows with the updated column
numbers into a shadow data set;

1

w

25

30

35

40

50

60

10

apply to the shadow data set any changes to the table
that are concurrent with the reorganization;

update a schema definition of the table with the
updated column numbers; and

switch the current data set to the shadow data set.

8. The system of claim 7, wherein the program code execut-
able by the processor to switch the current data set to the
shadow data set is further executable to:

update column numbers stored in any dependent objects of

remaining columns in the table; and

drop any dependent objects associated with the given col-

umn.

9. The system of claim 7, wherein the program code execut-
able by the processor to update the column numbers for the
columns in each row of the table using the mapping data
structure to remove the given column is further executable to:

create the mapping data structure comprising a correlation

array, wherein an index of the correlation array repre-
sents pre-drop column numbers for the columns of the
table in ascending order, wherein element values of the
correlation array represent post-drop column numbers
for the columns of the table,

set the element value of the given column to a predeter-

mined value associated with a dropped column;
renumber the element value of any columns subsequent to
the given column to remove the given column; and
update column numbers stored in the schema definition of
the table according to the renumbered element values of
the correlation array.

10. The system of claim 9, wherein the program code
executable by the processor to update the schema definition of
the table with the updated column numbers for the columns in
each row of the table using the mapping data structure to
remove the given column is further executable to:

determine that a view references the table, wherein the

view stores the column numbers for the columns of the
table at a time the view was created; and

update the column numbers stored in the view according to

the renumbered element values of the correlation array.
11. The system of claim 9, wherein the program code
executable by the processor to update the schema definition of
the table with the updated column numbers for the columns in
each row of the table using the mapping data structure to
remove the given column is further executable to:
determine that a view comprises a join referencing the
table, wherein the view stores the column numbers of a
first join result at a time the view was created;

compare column numbers of unique column references in
the first join result with column number in a second join
result based on current table definitions;

update column numbers for remaining columns in the sec-

ond join result based on any differences in the column
numbers of the unique column references between the
first join and the second join result; and

further update the column numbers for the columns in the

second join result according to the removal of the given
column from the table.

12. The system of claim 7, wherein the program code
executable by the processor to apply the shadow data set of
the changes to the table concurrent with the reorganization is
further executable to:

read a log for the changes to the current data set concurrent

with the reorganization;

convert the changes to apply to the shadow data set using

the mapping data structure; and

apply the converted changes to the shadow data set.

#* #* #* #* #*

